Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
AAPS J ; 26(3): 45, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589695

ABSTRACT

The 2023 Generic Drug Science and Research Initiative Public Workshop organized by the U.S. Food and Drug Administration (FDA) discussed the research needs to improve and enhance bioequivalence (BE) approaches for generic drug development. FDA takes such research needs and panel discussions into account to develop its Generic Drug User Fee Amendments III (GDUFA III) Science and Research Initiatives specific to generics. During the five workshop sessions, presentations and panel discussions focused on identifying and addressing scientific gaps and research needs related to nitrosamine impurity issues, BE assessment for oral products, innovative BE approaches for long-acting injectable products, alternative BE approaches for orally inhaled products, and advanced BE methods for topical products. Specifically, this report highlights the discussions on how to improve BE assessment for developing generic drug products based on research priorities for leveraging quantitative methods and modeling, as well as artificial intelligence/machine learning (AI/ML).


Subject(s)
Artificial Intelligence , Drugs, Generic , United States , Therapeutic Equivalency , Drug Development , United States Food and Drug Administration
2.
AAPS J ; 26(3): 56, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671158

ABSTRACT

Advair Diskus is an essential treatment for asthma and chronic obstructive pulmonary disease. It is a dry powder inhaler with a combination of fluticasone propionate (FP) and salmeterol xinafoate (SX). However, the pharmacokinetics (PK) batch-to-batch variability of the reference-listed drug (RLD) hindered its generic product development. This work developed the PK models for inhaled FP and SX that could represent potential batch variability. Two batches each of the reference and the test product (R1, R2, T1, T2) of Advair Diskus (100 µg FP/50 µg SX inhalation) were administered to 60 healthy subjects in a 4-period, 4-sequence crossover study. The failure of the bioequivalence (BE) between R1 and R2 confirmed the high between-batch variability of the RLD. Non-linear mixed effect modeling was used to estimate the population mean PK parameters for each batch. For FP, a 2-compartment model with a sequential dual zero-order absorption best described the PK profile. For SX, a 2-compartment model with a first-order absorption model best fit the data. Both models were able to capture the plasma concentration, the maximum concentration, and the total exposure (AUCinf) adequately for each batch, which could be used to simulate the BE study in the future. In vitro properties were also measured for each batch, and the batch with a higher fraction of the fine particle (diameter < 1 µm, < 2 µm) had a higher AUCinf. This positive correlation for both FP and SX could potentially assist the batch selection for the PK BE study.


Subject(s)
Bronchodilator Agents , Cross-Over Studies , Dry Powder Inhalers , Fluticasone-Salmeterol Drug Combination , Models, Biological , Therapeutic Equivalency , Humans , Administration, Inhalation , Male , Adult , Fluticasone-Salmeterol Drug Combination/pharmacokinetics , Fluticasone-Salmeterol Drug Combination/administration & dosage , Young Adult , Bronchodilator Agents/pharmacokinetics , Bronchodilator Agents/administration & dosage , Bronchodilator Agents/blood , Female , Middle Aged , Fluticasone/pharmacokinetics , Fluticasone/administration & dosage , Salmeterol Xinafoate/pharmacokinetics , Salmeterol Xinafoate/administration & dosage , Healthy Volunteers
4.
AAPS J ; 26(2): 28, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38413548

ABSTRACT

With the evolving role of Model Integrated Evidence (MIE) in generic drug development and regulatory applications, the need for improving Model Sharing, Acceptance, and Communication with the FDA is warranted. Model Master File (MMF) refers to a quantitative model or a modeling platform that has undergone sufficient model Verification & Validation to be recognized as sharable intellectual property that is acceptable for regulatory purposes. MMF provides a framework for regulatorily acceptable modeling practice, which can be used with confidence to support MIE by both the industry and the U.S. Food and Drug Administration (FDA). In 2022, the FDA and the Center for Research on Complex Generics (CRCG) hosted a virtual public workshop to discuss the best practices for utilizing modeling approaches to support generic product development. This report summarizes the presentations and panel discussions of the workshop symposium entitled "Model Sharing, Acceptance, and Communication with the FDA". The symposium and this report serve as a kick-off discussion for further utilities of MMF and best practices of utilizing MMF in drug development and regulatory submissions. The potential advantages of MMFs have garnered acknowledgment from model developers, industries, and the FDA throughout the workshop. To foster a unified comprehension of MMFs and establish best practices for their application, further dialogue and cooperation among stakeholders are imperative. To this end, a subsequent workshop is scheduled for May 2-3, 2024, in Rockville, Maryland, aiming to delve into the practical facets and best practices of MMFs pertinent to regulatory submissions involving modeling and simulation methodologies.


Subject(s)
Communication , Drug Development , United States , United States Food and Drug Administration , Computer Simulation , Drugs, Generic
5.
Environ Toxicol ; 39(5): 2572-2582, 2024 May.
Article in English | MEDLINE | ID: mdl-38205677

ABSTRACT

Ulcerative colitis (UC) is a complex inflammatory disease of colorectum that induces abnormal immune responses and severely affects the quality of life of the patients. Grape seed proanthocyanidin extract (GSPE) exerts anti-inflammatory and antioxidant functions in many inflammatory diseases. The objective of this study was to investigate the potential therapeutic effects and underlying mechanisms of GSPE in UC using a dextran sodium sulfate (DSS)-induced mouse UC model and a lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage model. In this study, we found that the GSPE markedly prevented DSS-induced weight loss and colon length shortening in UC mice. Further investigations showed that GSPE significantly attenuated the expression of pro-inflammatory cytokines TNF-α, IL-6, and IL-1ß, and elevated the expression of anti-inflammatory cytokine IL-10 in the colon tissues and serum of DSS-induced colitis mice by suppressing NF-κB signaling pathway. Furthermore, LPS-induced inflammation in RAW264.7 cells was also reversed by GSPE. Taken together, our results confirm that GSPE can ameliorate inflammatory response in experimental colitis via inhibiting NF-κB signaling pathway. This study advances the research progress on a potentially effective therapeutic strategy for inflammatory bowel diseases.


Subject(s)
Colitis, Ulcerative , Grape Seed Extract , Proanthocyanidins , Animals , Humans , Mice , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/toxicity , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Cytokines/metabolism , Disease Models, Animal , Inflammation/drug therapy , Lipopolysaccharides/toxicity , Mice, Inbred C57BL , NF-kappa B/metabolism , Quality of Life , Signal Transduction
7.
AAPS J ; 26(1): 15, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267593

ABSTRACT

On October 27-28, 2022, the US Food and Drug Administration (FDA) and the Center for Research on Complex Generics (CRCG) hosted a virtual public workshop titled "Best Practices for Utilizing Modeling Approaches to Support Generic Product Development." This report summarizes the presentations and panel discussions for a session titled "Development of Quantitative Comparative Approaches to Support Complex Generic Drug Development." This session featured speakers and panelists from both the generic industry and the FDA who described applications of advanced quantitative approaches for generic drug development and regulatory assessment within three main topics of interest: (1) API sameness assessment for complex generics, (2) particle size distribution assessment, and (3) dissolution profile similarity comparison. The key takeaways were that the analysis of complex data poses significant challenges to the application of conventional statistical bioequivalence methods, and there are various opportunities for using data analytics approaches for developing and applying suitable equivalence assessment method.


Subject(s)
Drug Development , Drugs, Generic , United States , Research Design , Therapeutic Equivalency , United States Food and Drug Administration
8.
9.
Cell Rep ; 42(8): 112886, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37527040

ABSTRACT

Cyclin-dependent kinase 4 (CDK4) and retinoblastoma protein (RB) are both important cell-cycle regulators that function in different scenarios. Here, we report that FERM domain-containing 8 (FRMD8) inhibits CDK4 activation and stabilizes RB, thereby causing cell-cycle arrest and inhibiting colorectal cancer (CRC) cell growth. FRMD8 interacts separately with CDK7 and CDK4, and it disrupts the interaction of CDK7 with CDK4, subsequently inhibiting CDK4 activation. FRMD8 competes with MDM2 to bind RB and attenuates MDM2-mediated RB degradation. Frmd8 deficiency in mice accelerates azoxymethane/dextran-sodium-sulfate-induced colorectal adenoma formation. The FRMD8 promoter is hypermethylated, and low expression of FRMD8 predicts poor prognosis in CRC patients. Further, we identify an LKCHE-containing FRMD8 peptide that blocks MDM2 binding to RB and stabilizes RB. Combined application of the CDK4 inhibitor and FRMD8 peptide leads to marked suppression of CRC cell growth. Therefore, using an LKCHE-containing peptide to interfere with the MDM2-RB interaction may have therapeutic value in CDK4/6 inhibitor-resistant patients.


Subject(s)
Colonic Neoplasms , Cyclin-Dependent Kinases , Animals , Mice , Colonic Neoplasms/genetics , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinases/metabolism , Phosphorylation , Retinoblastoma Protein/metabolism
10.
CPT Pharmacometrics Syst Pharmacol ; 12(5): 624-630, 2023 05.
Article in English | MEDLINE | ID: mdl-36710372

ABSTRACT

On November 30, 2021, the US Food and Drug administration (FDA) and the Center for Research on Complex Generics (CRCG) hosted a virtual public workshop titled "Establishing the Suitability of Model-Integrated Evidence (MIE) to Demonstrate Bioequivalence for Long-Acting Injectable and Implantable (LAI) Drug Products." This workshop brought relevant parties from the industry, academia, and the FDA in the field of modeling and simulation to explore, identify, and recommend best practices on utilizing MIE for bioequivalence (BE) assessment of LAI products. This report summerized presentations and panel discussions for topics including challenges and opportunities in development and assessment of generic LAI products, current status of utilizing MIE, recent research progress of utilizing MIE in generic LAI products, alternative designs for BE studies of LAI products, and model validation/verification strategies associated with different types of MIE approaches.


Subject(s)
Drugs, Generic , United States , Humans , Therapeutic Equivalency , United States Food and Drug Administration , Computer Simulation
11.
AAPS J ; 24(5): 98, 2022 09 02.
Article in English | MEDLINE | ID: mdl-36056223

ABSTRACT

Accurately predicting the spread of the SARS-CoV-2, the cause of the COVID-19 pandemic, is of great value for global regulatory authorities to overcome a number of challenges including medication shortage, outcome of vaccination, and control strategies planning. Modeling methods that are used to simulate and predict the spread of COVID-19 include compartmental model, structured metapopulations, agent-based networks, deep learning, and complex network, with compartmental modeling as one of the most widely used methods. Compartmental model has two noteworthy features, a flexible framework that allows users to easily customize the model structure and its high adaptivity that allows well-matured approaches (e.g., Bayesian inference and mixed-effects modeling) to improve parameter estimation. We retrospectively evaluated the prediction performances of the compartmental models on the CDC COVID-19 Mathematical Modeling webpage based on data collected between August 2020 and February 2021, and subsequently discussed in detail their corresponding model enhancement. Finally, we presented examples using the compartmental models to assist policymaking. By evaluating all models in parallel, we systemically evaluated the performance and evolution of using compartmental models for COVID-19 pandemic prediction. In summary, as a 100-year-old epidemic approach, the compartmental model presents a powerful tool that is extremely adaptive and can be readily customized and implemented to address new data or emerging needs during a pandemic.


Subject(s)
COVID-19 , Aged, 80 and over , Bayes Theorem , COVID-19/epidemiology , Disease Outbreaks , Epidemiological Models , Humans , Pandemics , Retrospective Studies , SARS-CoV-2
12.
CPT Pharmacometrics Syst Pharmacol ; 11(7): 833-842, 2022 07.
Article in English | MEDLINE | ID: mdl-35411692

ABSTRACT

The coronavirus disease 2019 (COVID-19) has presented unprecedented challenges to the generic drug development, including interruptions in bioequivalence (BE) studies. Per guidance published by the US Food and Drug Administration (FDA) during the COVID-19 public health emergency, any protocol changes or alternative statistical analysis plan for COVID-19-interrupted BE study should be accompanied with adequate justifications and not lead to biased equivalence determination. In this study, we used a modeling and simulation approach to assess the potential impact of study outcomes when two different batches of a Reference Standard (RS) were to be used in an in vivo pharmacokinetic BE study due to the RS expiration during the COVID-19 pandemic. Simulations were performed with hypothetical drugs under two scenarios: (1) uninterrupted study using a single batch of an RS, and (2) interrupted study using two batches of an RS. The acceptability of BE outcomes was evaluated by comparing the results obtained from interrupted studies with those from uninterrupted studies. The simulation results demonstrated that using a conventional statistical approach to evaluate BE for COVID-19-interrupted studies may be acceptable based on the pooled data from two batches. An alternative statistical method which includes a "batch" effect to the mixed effects model may be used when a significant "batch" effect was found in interrupted four-way crossover studies. However, such alternative method is not applicable for interrupted two-way crossover studies. Overall, the simulated scenarios are only for demonstration purpose, the acceptability of BE outcomes for the COVID19-interrupted studies could be case-specific.


Subject(s)
COVID-19 Drug Treatment , Cross-Over Studies , Humans , Pandemics , Pharmaceutical Preparations , Therapeutic Equivalency
13.
Neuromolecular Med ; 24(4): 374-384, 2022 12.
Article in English | MEDLINE | ID: mdl-35303275

ABSTRACT

Frankincense is a hard gelatinous resin exuded by Boswellia serrata. It contains a complex array of components, of which acetyl-11-keto-beta-boswellic acid (AKBA), a pentacyclic triterpenoid of the resin class, is the main active component. AKBA has a variety of physiological actions, including anti-infection, anti-tumor, and antioxidant effects. The use of AKBA for the treatment of mental diseases has been documented as early as ancient Greece. Recent studies have found that AKBA has anti-aging and other neurological effects, suggesting its potential for the treatment of neurological diseases. This review focuses on nervous system-related diseases, summarizes the functions and mechanisms of AKBA in promoting nerve repair and regeneration after injury, protecting against ischemic brain injury and aging, inhibiting neuroinflammation, ameliorating memory deficits, and alleviating neurotoxicity, as well as having anti-glioma effects and relieving brain edema. The mechanisms by which AKBA functions in different diseases and the relationships between dosage and biological effects are discussed in depth with the aim of increasing understanding of AKBA and guiding its use for the treatment of nervous system diseases.


Subject(s)
Boswellia , Nervous System Diseases , Triterpenes , Humans , Plant Extracts/pharmacology , Triterpenes/pharmacology , Triterpenes/therapeutic use , Resins, Plant , Nervous System Diseases/drug therapy
14.
Environ Sci Pollut Res Int ; 29(26): 39847-39859, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35112253

ABSTRACT

Environmental problems caused by the food processing industry have always been one of the concerns for the public. Herein, for the first time, a gate-to-gate life cycle assessment (LCA) was employed to evaluate the environmental impact of rice bran oil production. Four subsystems, namely, transportation of the raw rice bran to oil factory, crude oil extraction, oil refining, and oil storage, were established. The product sustainability software GaBi and the method CML 2001-Jan. 2016 were used to calculate and analyze the environmental burdens at each stage of the rice bran oil production chain. The results show the oil refining stage had the greatest environmental impact, followed by the oil extraction stage. High demands for coal and electricity make a critical difference in generating vast majority of environmental impacts. Modifying the electricity source and replacing traditional fuels with cleaner ones will do bring benefits to the sustainable development of the industry.


Subject(s)
Oryza , Petroleum , Animals , Electricity , Environment , Life Cycle Stages , Rice Bran Oil
15.
Front Microbiol ; 12: 687533, 2021.
Article in English | MEDLINE | ID: mdl-34475858

ABSTRACT

Dietary copper supplementation in the feed of piglets generally exceeds 250-800 mg/kg, where a higher quantity (>250 mg/kg) can promote growth and improve feed conversion. Despite the reported positive effects, 90% of copper is excreted and can accumulate and pollute the soil. Data indicate that fungi have a biosorptive capacity for copper. Thus, the objectives of the present experiment were to study the effects of adding different strains of fungi on the biosorptive capacity for copper in swine manure and to evaluate potential effects on microbiota profiles. Aspergillus niger (AN), Aspergillus oryzae (AO), and Saccharomyces cerevisiae (SC) were selected, and each added 0.4% into swine manure, which contain 250 mg/kg of copper. The incubations lasted for 29 days, and biosorption parameters were analyzed on the 8th (D8), 15th (D15), 22nd (D22), and 29th (D29) day. Results showed that after biosorption, temperature was 18.47-18.77°C; pH was 6.33-6.91; and content of aflatoxin B1, ochratoxin A, and deoxynivalenol were low. In addition, residual copper concentration with AN was the lowest on D15, D22, and D29. The copper biosorption rate was also highest with AN, averaging 84.85% on D29. Biosorption values for AO reached 81.12% and for SC were lower than 80%. Illumina sequencing of 16S and ITS rRNA gene revealed that fungal treatments reduced the diversity and richness of fungal abundance, but had no effect on bacterial abundance. Unknown_Marinilabiliaceae, Proteiniphilum, Tissierella, and Curvibacter were the dominant bacteria, while Aspergillus and Trichoderma were the dominant fungi. However, the added strain of S. cerevisiae was observed to be lower than the dominant fungi, which contained less than 0.05%. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment predicted via PICRUSt2 that there were bacterial genes potentially related to various aspects of metabolism and environmental information processing. Overall, data indicated that Aspergillus can provide microbial materials for adsorption of copper.

16.
Zhongguo Zhong Yao Za Zhi ; 46(15): 3893-3899, 2021 Aug.
Article in Chinese | MEDLINE | ID: mdl-34472265

ABSTRACT

To explore the protective effect and mechanism of ethyl acetate extract from Bidens bipinnata on hepatocyte damage induced by endoplasmic reticulum stress. Tunicamycin was used to establish the damage model in L02 cells. Methyl thiazolyl tetrazolium(MTT) colorimetric assay was used to investigate the survival rate of ethyl acetate extract from B. bipinnata in L02 cells injury induced by endoplasmic reticulum stress; the protein expressions of endoplasmic reticulum stress-related molecule glucose regulated protein 78(GRP78), PKR-like ER kinase(PERK), eukaryotic initiation factor-2(eIF2α), activating transcription factor 4(ATF4), C/EBP homologous protein(CHOP), B-cell CLL/lymphoma 2(Bcl-2), Bal-2 associated X apoptosis regulator(Bax) were examined by Wes-tern blot. The expressions of the above proteins were also detected after endoplasmic reticulum stress inhibitor(4-phenyl butyric acid) and CHOP shRNA-mediated knockdowns were added. The expressions of GRP78, PERK, CHOP in L02 cells were observed by immunofluorescence method. The results showed that ethyl acetate extract from B. bipinnata could significantly increase the survival rate of L02 cell injury caused by endoplasmic reticulum stress in a dose and time-dependent manner(P<0.05 or P<0.01). The expression levels of GRP78, PERK, eIF2α, ATF4, CHOP and Bax in the drug treatment groups were significantly down-regulated(P<0.05 or P<0.01), while Bcl-2 was significantly up-regulated(P<0.01). After endoplasmic reticulum stress inhibitor and CHOP shRNA-mediated knockdowns were added, the expression levels of GRP78, PERK, eIF2α, ATF4, CHOP, Bax in the drug treatment groups were significantly down-regulated(P<0.01), whereas Bcl-2 was significantly up-regulated(P<0.01). Immunofluorescence results showed that the expressions of GRP78, PERK, CHOP were consistent with the Western blot method. In conclusion, ethyl acetate extract from B. bipinnata has a significant protective effect on the damage of L02 cells caused by endoplasmic reticulum stress. The mechanism may be related to the inhibition of endoplasmic reticulum stress and the down-regulation of apoptosis in cells through the PERK/eIF2α/ATF4/CHOP signaling pathway.


Subject(s)
Bidens , Endoplasmic Reticulum Stress , Acetates , Apoptosis , Hepatocytes , Transcription Factor CHOP/genetics , eIF-2 Kinase/genetics
17.
Arch Oral Biol ; 130: 105222, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34358809

ABSTRACT

OBJECTIVE: The study aimed to investigate the combined effects of cyclic stretch and tumor necrosis factor-alpha (TNF-α) on the osteogenic differentiation of MC3T3-E1 cells and the role of the nuclear factor-kappaB (NF-κB) signaling pathway in this process. DESIGN: MC3T3-E1 cells were treated with TNF-α (0.5 and 10 ng/mL) and cyclically stretched using the Flexcell tension system 4000 with 12 % elongation for 12 h. Furthermore, to explore which cytokines might be regulated by the NF-κB signaling pathway in osteogenic differentiation, the cells were pre-treated with NF-κB inhibitor, pyrrolidine dithiocarbamate (PDTC), and then cyclically stretched for 12 h in the presence of 10 ng/mL of TNF-α. RT-PCR and western blot were utilized to detect the expression of type Ⅰ collagen (COL1), osteocalcin (OCN), runt-related transcription factor 2 (Runx2), alkaline phosphatase (ALP), osteoprotegerin (OPG), receptor activator of NF-κB ligand (RANKL), NF-κB, and phosphorylated NF-κB (p-NF-κB) at gene and protein levels. RESULTS: Cyclic stretch alone increased the expression of COL1, OCN, Runx2, ALP, and OPG, decreasing the expression of RANKL and the RANKL/OPG ratio. The upregulation or downregulation induced by cyclic stretch were restrained in the presence of TNF-α. The p-NF-κB/NF-κB ratio increased at any stimulation. Inhibition of NF-κB signaling pathway restrained the expression variations of COL1, OCN, ALP, OPG, and RANKL induced by TNF-α combined with cyclic stretch. CONCLUSION: The results indicated that TNF-α inhibited the osteogenic differentiation of MC3T3-E1 cells induced by cyclic stretch and NF-κB signaling pathway might play a role in this process.


Subject(s)
Osteogenesis , Tumor Necrosis Factor-alpha , Cell Differentiation , NF-kappa B , Osteoblasts
18.
Reprod Biol ; 21(3): 100513, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34049116

ABSTRACT

Di-(2-ethylhexyl) phthalate has been reported to interfere with the development and function of animal reproductive systems. However, hardly any studies provide methods to minimize or prevent the adverse effects of DEHP on reproduction. The energy balance state of mammals is closely related to reproductive activities, and the reproductive axis can regulate reproductive activities according to changes in the body's energy balance state. In this study, the effects of every other day fasting (EODF), as a way of intermittent fasting, on preventing the precocious puberty induced by DEHP in female rats was studied. EODF significantly improved the advancement of vaginal opening age (as the markers of puberty onset) and elevated serum levels of luteinizing hormone and estradiol (detected by ELISA) induced by 5 mg kg-1 DEHP exposure (D5). The mRNA and western blot results showed that the EODF could minimized the increase of gonadotropin-releasing hormone expression induced by DEHP exposure. The administration of DEHP could elevate the levels of kisspeptin protein and the number of kisspeptin-immunoreactive neurons in anteroventral periventricular nucleu, and this increase was diminished considerably by EODF treatment. In contrast, the D5 and D0 groups showed no remarkable difference in the level of Kiss1 expression in arcuate nucleus, whereas the D5 + EODF group had a remarkable decrease in kisspeptin expression as compared with the other two groups. Our results indicated that EODF might inhibit the acceleration of puberty onset induced by DEHP exposure via HPG axis.


Subject(s)
Diethylhexyl Phthalate/toxicity , Fasting , Hypothalamo-Hypophyseal System/drug effects , Ovary/drug effects , Pituitary Gland/drug effects , Sexual Maturation/drug effects , Animals , Estradiol/blood , Female , Follicle Stimulating Hormone/blood , Leptin/blood , Luteinizing Hormone/blood , RNA, Messenger , Rats , Rats, Sprague-Dawley , Time Factors , Vagina/drug effects , Vagina/growth & development , Weight Gain
19.
PLoS Pathog ; 17(1): e1008770, 2021 01.
Article in English | MEDLINE | ID: mdl-33428670

ABSTRACT

Environments such as light condition influence the spread of infectious diseases by affecting insect vector behavior. However, whether and how light affects the host defense which further affects insect preference and performance, remains unclear, nor has been demonstrated how pathogens co-adapt light condition to facilitate vector transmission. We previously showed that begomoviral ßC1 inhibits MYC2-mediated jasmonate signaling to establish plant-dependent mutualism with its insect vector. Here we show red-light as an environmental catalyzer to promote mutualism of whitefly-begomovirus by stabilizing ßC1, which interacts with PHYTOCHROME-INTERACTING FACTORS (PIFs) transcription factors. PIFs positively control plant defenses against whitefly by directly binding to the promoter of terpene synthase genes and promoting their transcription. Moreover, PIFs interact with MYC2 to integrate light and jasmonate signaling and regulate the transcription of terpene synthase genes. However, begomovirus encoded ßC1 inhibits PIFs' and MYC2' transcriptional activity via disturbing their dimerization, thereby impairing plant defenses against whitefly-transmitted begomoviruses. Our results thus describe how a viral pathogen hijacks host external and internal signaling to enhance the mutualistic relationship with its insect vector.


Subject(s)
Begomovirus/physiology , Hemiptera/virology , Insect Vectors/virology , Plant Diseases/virology , Symbiosis , Viral Proteins/metabolism , Virulence Factors/metabolism , Animals , Arabidopsis/metabolism , Arabidopsis/virology , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Light , Phytochrome , Nicotiana/metabolism , Nicotiana/virology , Viral Proteins/genetics , Virulence Factors/genetics
20.
Front Nutr ; 8: 791861, 2021.
Article in English | MEDLINE | ID: mdl-34977130

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) has developed into the world's largest chronic epidemic. In NAFLD, hepatic steatosis causes hepatocytes dysfunction and even apoptosis. The liver has a strong restoration or regeneration ability after an injury, however, it is unclear through which pattern fatty liver injury in NAFLD is repaired and what the repair mechanism is. Here, we found that in the high-fat diet (HFD)-induced NAFLD mice model, fatty liver injury caused the significant ductular reaction (DR), which is a marker to promote the repair of liver injury. SOX9+ and HNF4α+ biphenotype also suggested that hepatic progenitor cells (HPCs) were activated by fatty liver injury in the HFD-elicited NAFLD mice model. Concurrently, fatty liver injury also activated the Wnt/ß-catenin signal pathway, which is a necessary process for HPC differentiation into mature hepatocytes. However, Sirt1 knockdown weakened HPC activation and Wnt/ß-catenin signal in Sirt1+/- mice with HFD feeding. In rat-derived WB-F344 hepatic stem cell line, Sirt1 overexpression (OE) or Sirt1 activator-Resveratrol promoted HPC differentiation via activating Wnt/ß-catenin signal pathway. Glycogen PAS staining demonstrated that Sirt1 OE promoted WB-F344 cells to differentiate into mature hepatocytes with glycogen synthesis ability, while Sirt1 inhibitor EX527 or Wnt/ß-catenin pathway inhibitor HF535 decreased glycogen positive cells. Together, our data suggested that Sirt1 plays a vital role in activating HPCs to repair fatty liver injury or promote liver regeneration through the Wnt/ß-catenin signal pathway in NAFLD, which might provide a new strategy for fatty liver injury or NAFLD therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...